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1 Introduction

The interval and Patterson functions For a given chord P, the interval function measures the number of ways that
the interval x can be spanned between members of P:

IFUNCx(P) = |{a − b ≡ x, a, b ∈ P}|.

Example: P = {0, 1, 4, 6} in Z12. There are four ways to move by 0 (unison) and 1 way to move by each of the
other intervals in 12-tone equal temperament (12-tet). Writing the interval function as a vector where the ith entry
(beginning with i = 0) is IFUNCi(P), we have

IFUNC(P) = [411111111111].

Mathematicians call this the Patterson function. One of the underlying assumptions of the interval function is that a
chord’s “quality” is in large part a result of the quality of its constituent intervals.

Z-related chords and homometric sets If two chords have the same interval function, musicians say that they are
Z-related.

Example: P = {0, 1, 4, 6} and Q = {0, 1, 3, 7} are Z-related, since their interval functions are identical.

Mathematicians say that these sets are homometric. Homometric metric sets were first studied in the 1940s by Bullough
and others in relation to crystallography.

2 The Z-relation problem

Necessary conditions An important question is what are the necessary conditions for a set to possess a non-trivial
Z-related/homometric partner. This is referred as the Z-relation problem.

Example: Let P = {0,
√

2,
√

2 + 3, 6}. Is P non-trivially Z-related to any other set? If so, which one(s)?1

Understanding of Z-relations in Music Theory
1Except for Case 2 in §3 below, the unit of distance is always the semitone. Thus,

√
2 ≈ 1.41 is the pitch-class approximately 1.41 semitones

above pc 0.
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1. Sets related by transposition and/or inversion are trivially Z-related.

2. If P and Q in Zn are Z-related, then their complements with respect to Zn, P̄ and Q̄, are also Z-related.

3. In Z2n, n-note sets are Z-related to their complements.

4. Non-trivial Z-relations occur for sets of 4 or more notes.

5. Non-trivial Z-relations do not occur for equal tempered systems of fewer than 8 pitch-classes.

6. Soderberg’s “Q-inversion” preserves interval content.

3 Some cases of Z-relations

Case 1 (Bullough, Rosenblatt)
{0, x, x + 3, 6} Z {0, x + 3, 6, x + 6}

Examples:

For x = 1, {0, 1, 4, 6} (4-Z15) Z {0, 4, 6, 7} (4-Z29).

For x =
√

2, {0,
√

2,
√

2 + 3, 6} Z {0,
√

2 + 3, 6,
√

2 + 6}.

Noting that the second chord in Case 1 is inversionally related to {−x, 0,−x + 3, 6} leads to an alternate formulation:

{0, x, x + 3, 6} Z {−x, 0,−x + 3, 6}.

These two different formulations of the same case can be extended in a separate manner. (See cases 3 and 4 below.)

Case 1 generates all possible Z-related pairs of 4 notes, except the following case. (This was proved by Rosenblatt.)

Case 2 In Z13,
{0, 1, 4, 6} Z {0, 2, 3, 7}.

Case 3 We can extend the alternate formulation of Case 1 in the following manner. Replace the minor third by two
inversionally symmetric sets where the axes of symmetry are a minor third apart.

Let P = {0, 6}, R1 = I0(R1), R2 = I6(R2), and S x = P ∪ Tx(R1 ∪ R2). Then S x and S −x are Z-related.

By varying the choices of R1, R2, and x, case 4 generates 12 of the 19 Z-related pairs of 6 or fewer notes in 12-tet. (See
Table 1.) There are a total of 85 Z-related pairs in 8-tet through 14-tet, not including those pairs where the cardinality
is greater than half of the number of pcs. Case 2 generates 50 of these pairs, or 59%. (Of course one of the remaining
pairs corresponds to case 3.)

Case 3 can be realized using Soderberg’s Q-inversion, but to do so one must understand the basic structure of these
sets. In other words, one must understand Case 3 to find the appropriate Q-inversion.
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R1 R2 x S x S −x

{0} {3} 1 {0, 1, 4, 6} ∈ 4-Z15 {11, 0, 2, 6} ∈ 4-Z29
{0} {2, 4} 1 {0, 1, 3, 5, 6} ∈ 5-Z12 {11, 0, 1, 3, 6} ∈ 5−Z-36
{−2, 2} {3} 1 {11, 0, 3, 4, 6} ∈ 5-Z18 {9, 0, 1, 2, 6} ∈ 5-Z38
{−1.5, 1.5} {2.5, 3.5} 0.5 {10, 0, 1, 2, 3, 6} ∈ 6-Z39 {11, 0, 2, 3, 4, 6} ∈ 6-Z10
{−2.5, 2.5} {1.5, 4.5} 0.5 {9, 0, 1, 2, 4, 6} ∈ 6-Z46 {10, 0, 2, 3, 5, 6} ∈ 6-Z24
{−2.5, 2.5} {0.5, 5.5} 1.5 {8, 11, 0, 1, 4, 6} ∈ 6-Z48 {11, 0, 2, 4, 6, 7} ∈ 6-Z26
{−1, 0, 1} {3} 2 {0, 1, 2, 3, 5, 6} ∈ 6-Z3 {9, 10, 11, 0, 1, 6} ∈ 6-Z36
{−0.5, 0.5} {2.5, 3.5} 1.5 {0, 1, 2, 4, 5, 6} ∈ 6-Z4 {10, 11, 0, 1, 2, 6} ∈ 6-Z37
{−2, 0, 2} {3} 1 {9, 11, 0, 1, 2, 6} ∈ 6-Z40 {11, 0, 1, 3, 4, 6} ∈ 6-Z11
{−1.5, 1.5} {2.5, 3.5} 0.5 {11, 0, 2, 3, 4, 6} ∈ 6-Z10 {10, 0, 1, 2, 3, 6} ∈ 6-Z39
{−4, 0, 4} {3} 1 {9, 0, 1, 4, 5, 6} ∈ 6-Z44 {7, 11, 0, 2, 3, 6} ∈ 6-Z19
{−1, 1, 6} {3} 2 {0, 1, 3, 5, 6} ∈ 6-Z25 {9, 11, 0, 1, 4, 6} ∈ 6-Z47

Table 1: The Z-related pcsets S x and S −x in 12-tet, where S x = {0, 6} ∪ Tx(R1 ∪ R2).

Case 4a (Bullough) We can extend Case 1 in the following manner. Let P be the m-fold division of the octave that
contains {0}, P =

{
12 j
m

}m−1

j=0
. Divide the smallest interval of P into n parts, Q =

{
12k
mn

}n−1

k=0
, and transpose this by an

arbitrary interval, Tx(Q). Then
P ∪ Tx(Q) Z P ∪ Tx+ 12k

mn
(Q).

Case 4b (Bullough) This is the same as Case 4a with the exception that members of Q are not necessarily equal to
12k
mn . Rather, each member of Q, qk, belongs to the m-fold division of the octave that contains 12k

mn . That is, Q = {qk}
n−1
k=0 ,

where qk ≡
12k
mn mod 12

m . With this modification, the result in Case 4a also obtains.

4 Mathematical approaches to homometric sets

The Fourier transform Quinn (2007) uses the Fourier transform as part of an extensive theory of chord quality.
In continuous pc space, the Fourier transform of each pcset gives rise to an infinite series of Fourier components.
Intuitively, the kth Fourier component of a pcset P is given by the following steps:

1. begin with a 12-pc clockface;

2. for each p in P draw an arrow from the center of the clock to kp’oclock (even if this gives rise to non-integer
values);

3. add the arrows together by placing, in any order, the tail of one to the head of another; and

4. the arrow extending from the center of the clock to the head of the last arrow in the summation is the kth Fourier
component.2

The length of this arrow is the magnitude of this component, written |P̂(k)|. The importance of the Fourier transform
for the Z-relation is that if |P̂(k)| = |Q̂(k)| for all k, then P Z Q.

2Formally, the Fourier transform of pcset P (more precisely, the characteristic function of P) is
∑

p∈P e−2πipz.
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The Z-relation as an algebraic property Rosenblatt and others represent sets in R or R/Z as polynomials. For
our purposes, the pitch-class set P can be represented by the polynomial P(y) =

∑
p∈P yp, where y12 = y0 = 1. For

example, Q = {0, 1, 4, 6} is represented by Q(y) = y0 + y1 + y4 + y6. For any two pcsets represented as polynomials,
D(y) and E(y), there is a transformation, U(y), that takes us from D to E:

D(y)U(y) = E(y), or U(y) =
E(y)
D(y)
.

For example, transposition by x is given by the transformation U(x) = yx; e.g.,

Q(y) · y2 = (y0 + y1 + y4 + y6)y2 = y2 + y3 + y6 + y8 = T2(Q)(y).

U is called a spectral unit if U(y)U∗(y) = y0 = 1, where U∗ is the complex conjugate of U. For example, transposition
by x is a spectral unit: yxy−x = y0 = 1.

Theorem (from Rosenblatt) If D, E ∈ R/Z or R, then D and E are homometric (Z-related) if and only if there exists
a spectral unit U such that D(x)U(x) = E(x).

Thus, the existence of homometric sets relates to the factorization of polynomials. Whether this algebraic property has
a relevant musical interpretation depends on the particular case.

5 Bibliography

Bullough, R.K. (1961). “On Homometric Sets. I. Some General Theorems.” Acta Crystallographica 14: 257–268.

Lewin, David (1987). Generalized Musical Intervals and Transformations. New Haven: Yale University Press.

Quinn, Ian (2007). “General Equal-Tempered Harmony (Parts II and III).” Perspectives of New Music 45/1: 4–63.

Rosenblatt, Joseph (1984). “Phase Retrieval.” Communications in Mathematical Physics 95: 317–343.

Soderberg, Stephen (1995). “Z-Related Sets as Dual Inversion.” Journal of Music Theory 39.1: 77–100.

4


